Dentro de un proyecto de Data Mining podemos diferenciar las siguientes fases:
- Identificación y definición del objetivo de negocio a resolver. Muy importante. La minería de datos no es un fin en si mismo, sin objetivos de negocio no hay proyecto.
- Identificación de las fuentes de datos para soportar la resolución de los objetivos y análisis preliminar de la calidad de los datos. Si no tenemos unos datos con la calidad requerida y el formato necesario, nuestro proyecto será un fracaso. Creo que muchas veces se subestima este punto...
- Preparación y acondicionamiento de los datos. Una fase crucial, que ocupa un tanto por ciento importante del tiempo del proyecto. Con preparación y acondicionamiento estamos hablando de las estructuras que alimentaran la construcción del modelo. Por ejemplo, si queremos hacer una segmentación de clientes, para ello necesito preparar los datos en formato tabla de clientes, donde cada registro es un cliente con los atributos de modelización en columnas.
- Modelización de datos. Aplicando las técnicas de minería de datos, obtenemos el mejor modelo predictivo posible para nuestros objetivos.
- Análisis de resultados. Una vez obtenido el modelo, se debe proceder a su validación comprobando que las conclusiones que arroja son válidas y suficientemente satisfactorias. En el caso de haber obtenido varios modelos mediante el uso de distintas técnicas, se deben comparar los modelos en busca de aquel que se ajuste mejor al problema. Si ninguno de los modelos alcanza los resultados esperados, debe alterarse alguno de los pasos anteriores para generar nuevos modelos.
- Conclusiones. ¿Se han cumplido las expectativas y los objetivos?
- Puesta en producción. No nos podemos quedar con unos simples informes de consultoría o una serie de recomendaciones. Si cogemos los modelos generados y los ponemos en producción de forma efectiva estaremos aprovechando el principal beneficio del Data Mining.
No hay comentarios:
Publicar un comentario